Satellite cell activity, without expansion, after nonhypertrophic stimuli.

نویسندگان

  • Sophie Joanisse
  • Bryon R McKay
  • Joshua P Nederveen
  • Trisha D Scribbans
  • Brendon J Gurd
  • Jenna B Gillen
  • Martin J Gibala
  • Mark Tarnopolsky
  • Gianni Parise
چکیده

The purpose of the present studies was to determine the effect of various nonhypertrophic exercise stimuli on satellite cell (SC) pool activity in human skeletal muscle. Previously untrained men and women (men: 29 ± 9 yr and women: 29 ± 2 yr, n = 7 each) completed 6 wk of very low-volume high-intensity sprint interval training. In a separate study, recreationally active men (n = 16) and women (n = 3) completed 6 wk of either traditional moderate-intensity continuous exercise (n = 9, 21 ± 4 yr) or low-volume sprint interval training (n = 10, 21 ± 2 yr). Muscle biopsies were obtained from the vastus lateralis before and after training. The fiber type-specific SC response to training was determined, as was the activity of the SC pool using immunofluorescent microscopy of muscle cross sections. Training did not induce hypertrophy, as assessed by muscle cross-sectional area, nor did the SC pool expand in any group. However, there was an increase in the number of active SCs after each intervention. Specifically, the number of activated (Pax7(+)/MyoD(+), P ≤ 0.05) and differentiating (Pax7(-)/MyoD(+), P ≤ 0.05) SCs increased after each training intervention. Here, we report evidence of activated and cycling SCs that may or may not contribute to exercise-induced adaptations while the SC pool remains constant after three nonhypertrophic exercise training protocols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury

BACKGROUND Rotator-cuff injury (RCI) is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known. METHODS AND FINDINGS Potential contributions of denervation and disrupted satellite cell responses to growth signals were examin...

متن کامل

Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology

BACKGROUND Migraine is a complex, chronic, painful, neurovascular disorder characterized by episodic activation of the trigeminal system. Increased levels of calcitonin gene-related peptide (CGRP) are found at different levels during migraine attacks. Interestingly, CGRP is also released within the trigeminal ganglia suggesting possible local effects on satellite cells, a specialized type of gl...

متن کامل

Point:Counterpoint: Satellite cell addition is/is not obligatory for skeletal muscle hypertrophy.

Myofiber size is dynamically regulated, increasing and decreasing depending on muscle use. Hypertrophy is defined by increases in myofiber cross-sectional area and mass as well as myofibrillar protein content. Myofibers contain many hundreds of nuclei, each of which has a nuclear domain. A nuclear domain is the volume of cytoplasm within the myofiber regulated by the gene products of a single m...

متن کامل

Rb1 gene inactivation expands satellite cell and postnatal myoblast pools.

Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent sate...

متن کامل

Mechanism of satellite cell regulation by myokines

Skeletal muscle stem cells, known as satellite cells, participate in postnatal skeletal muscle growth, regeneration, and hypertrophy. They are quiescent in the resting state, but are activated after muscle injury, and subsequently replicate and fuse into existing myofibers. The behavior of satellite cells during muscle regeneration is regulated by extrinsic factors, such as the extracellular ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 309 9  شماره 

صفحات  -

تاریخ انتشار 2015